Nucleon Structure from Lattice QCD

Philipp Hägler

supported by

excellence cluster universe

Ph. Hägler,

QCD factorization and observables on the lattice

"Measurements" on the lattice

Lattice QCD – general comments

some "human resources" I am indebted to:

M. Altenbuchinger, B. Musch (→JLab), M. Gürtler (→Regensburg), W. Weise

(T39, TUM)

B. Bistrovic, J. Bratt, J.W. Negele, A. Pochinsky, S. Syritsyn (MIT) R.G. Edwards, B. Musch, D.G. Richards (JLab) K. Orginos (W&M) M. Engelhardt (New Mexico) G. Fleming, M. Lin (Yale), H.-W. Lin (INT), H. Meyer (Mainz), D.B. Renner (DESY Zeuthen), M. Procura (TUM), W. Schroers D. Brömmel (Southampton), M. Diehl (DESY), M. Göckeler, M. Gürtler, Th. Hemmert, A. Schäfer (Regensburg U.) R. Horsley, J. Zanotti (Edinburgh U.) Y. Nakamura (DESY Zeuthen) P. Rakow (Liverpool U.) D. Pleiter, G. Schierholz (DESY) H. Stüben (ZIB)

(LHPC)

(QCDSF/UKQCD)

References: QCDSF PoS(LAT2006)120, 0710.1534, PRL 98 222001 (2007), PRL 2008 (0708.2249), Brömmel et al EPJC 2007; LHPC PRD 77, 094502 (2008), 0810.1933; 1001.3620; Diehl&Hägler EPJC hep-ph/0504175; Musch et al. 0811.1536; Musch arXiv:0907.2381; PhH, Musch et al. EPL 2009 (arXiv:0908.1283) PhH Phys.Rep. 2010 (0912.5483)

Machines

SGI Altix 4700 at LRZ Garching

7n cluster at JLab

APEmille at NIC/DESY Zeuthen

Ph. Hägler, MENU 2010, W&M

sources: (http://www.lrz-muenchen.de/wir/einweihungsfeier/bildergalerie/ fotoindex.html) & Jlab, EPCC webpages

Overview

Proton mean square radii – Dirac isovector radius

Ph. Hägler, MENU 2010, W&M

10

Nucleon isovector anomalous magnetic moment

Proton mean square radii – Pauli isovector radius

Nucleon axial vector coupling constant

Ph. Hägler, MENU 2010, W&M

n=2 - A, B, C - Form factors of the energy momentum tensor

Quark angular momentum

J_{u} , J_{d} template figure

Quark spin and orbital angular momentum

Correlations between momenta, positions, spins

Transverse spin densities in the proton

Intrinsic transverse momentum densities of the nucleon

Summary

remarkable progress in lattice QCD calculations of hadron structure

Backup

Decomposition of the proton spin

	J^{u-d}	J^{u+d}	J^u	J^d
BChPT	0.234(6)	0.238(8)	0.236(6)	0.0018(37)
HBChPT		0.264(6)		
HBChPT + Δ		0.226(22)		
mixed ChPT				
experiment				

	$g_A = \Delta \Sigma^{u-d}$	$\Delta \Sigma^{u+d}/2$	$\Delta \Sigma^u/2$	$\Delta \Sigma^d/2$	L^{u-d}	L^{u+d}	L^u	L^d
BChPT								
HBChPT		0.208(10)				0.056(11)		
HBChPT + Δ	1.21(17)							
mixed ChPT			0.411(36)	-0.203(35)	-0.379(71)	0.030(12)	-0.175(36)	0.205(35)
experiment	1.2670(35)	0.208(9)	0.421(6)	-0.214(6)				

$$\frac{1}{2} \approx 0.238_{(8)}[J^{u+d}] + J_g = 0.208_{(10)}[\Delta\Sigma^{u+d/2}] + 0.030_{(12)}[L^{u+d}] + J_g$$

= 0.411_{(36)}[\Delta\Sigma^{u/2}] - 0.175_{(36)}[L^u] - 0.203_{(35)}[\Delta\Sigma^{d/2}] + 0.205_{(35)}[L^d] + J_g
MS at 4 GeV²

*[non-singlet, connected only; additional uncertainties due to chiral extrapolations, renormalization]

Ph. Hägler, MENU 2010, W&M

under investigation (Syritsyn et al.)

Lattice QCD vs relativistic quark models – QCD evolution

(Wakamatsu 2005; Thomas, PRL 2008)

Lattice QCD vs relativistic quark models – QCD evolution

(Wakamatsu 2005; Thomas, PRL 2008)

Lattice simulation details

- mixed action approach: DW fermions on a Asqtad staggered sea for N_f=2+1; including HYP-smearing
- $L_s = 16$, m_{res} **0**.1 m_q
- lattice spacing a \sim 0.124 fm
- volumes of ${\sim}2.5$ and ${\sim}3.5~\text{fm}^3$
- two sink momenta P'=(0,0,0), (-1,0,0)

Light $m_{\text{sea}}^{\text{asqtad}}$	Volume Ω	$(am)_{\pi}$	$(af)_{\pi}$	$(am)_N$	m_{π} [MeV]	f_{π} [MeV]	m_N [MeV]
0.007	$20^3 \times 64$	0.1842(7)	0.0657(3)	0.696(7)	292.99(111)	104.49(45)	1107.1(111)
0.010	$28^3 \times 64$	0.2238(5)	0.0681(2)	0.726(5)	355.98(80)	108.31(34)	1154.8(80)
0.010	$20^3 \times 64$	0.2238(5)	0.0681(2)	0.726(5)	355.98(80)	108.31(34)	1154.8(80)
0.020	$20^3 \times 64$	0.3113(4)	0.0725(1)	0.810(5)	495.15(64)	115.40(23)	1288.4(80)
0.030	$20^3 \times 64$	0.3752(5)	0.0761(2)	0.878(5)	596.79(80)	121.02(34)	1396.5(80)
0.040	$20^3 \times 32$	0.4325(12)	0.0800(5)	0.941(6)	687.94(191)	127.21(78)	1496.8(95)
0.050	$20^3 \times 32$	0.4767(10)	0.0822(4)	0.991(5)	758.24(159)	130.70(67)	1576.3(80)

of "measurements" increased by factor 8 compared to PRD 77 094502 (2008)

ongoing efforts within LHPC based on DW fermions (RBC/UKQCD) and improved Wilson fermions (BMW)

Gluon contributions to the proton spin

*[non-singlet, connected only; additional uncertainties due to chiral extrapolations, renormalization]

Form factors of the energy momentum tensor

isovector quark momentum fraction

Isosinglet quark spin fraction (required for L=J- $\Im \Sigma/2$)

employing HBChPT by Diehl, Manashov, Schäfer EJPA 2006; Ando, Chen, Kao PRD 2006

Quark angular momentum

emplyoing HBChPT+ results [Chen Ji PRL 2002] LHPC arXiv:1001.3620 0.35 0.30 0.25 0.20 J^{u+d} 0.15 0.10 0.05 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 $m_{\pi}^2 \,[{\rm GeV}^2]$ $\overline{\text{MS}}$ at 4 GeV² $J^{u+d} \approx 0.245(30) \,\widehat{\approx} \, 50\%$ of 1/2

Isovector axial vector coupling constant (required for L=J- $\Im \Sigma/2$)

emplyoing SSE (HBChPT+?) results [Procura, Hemmert, Musch, Weise PRD 2007, QCDSF PRD 2006]

Global, simultaneous chiral extrapolation of A, B, C

B₂₀ and the anomalous gravitomagnetic moment

[Teryaev `99-; Brodsky, Hwang et al. `00-]

C_{20} and the second moment of the D-term $_{\ensuremath{[}\text{Polyakov&Weiss`99]}}$

Nucleon axial vector coupling constant published data

$\left| \langle P | \bar{u} \gamma_{\mu} \gamma_{5} u - \bar{d} \gamma_{\mu} \gamma_{5} d | P \rangle = g_{A} \bar{U}(P) \gamma_{\mu} \gamma_{5} U(P) \right|$

Transversely polarized quarks in transversely polarized nucleons

Intrinsic transverse momentum densities of the nucleon

$$\begin{split} \rho_{L}(x, \boldsymbol{k}_{\perp}; \Lambda, \boldsymbol{S}_{\perp}, \lambda) &= \frac{1}{2} \bigg(f_{1} + \lambda \Lambda g_{1} + \bigg[\frac{\boldsymbol{S}_{j} \boldsymbol{\epsilon}_{ji} \boldsymbol{k}_{i}}{m_{N}} f_{1T}^{\perp} \bigg] + \lambda \frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}}{m_{N}} g_{1T} \bigg) \\ \rho_{T}(x, \boldsymbol{k}_{\perp}; \Lambda, \boldsymbol{S}_{\perp}, \boldsymbol{s}_{\perp}) &= \frac{1}{2} \bigg(f_{1} + \boldsymbol{s}_{\perp} \cdot \boldsymbol{S}_{\perp} h_{1} + \bigg[\frac{\boldsymbol{s}_{j} \boldsymbol{\epsilon}_{ji} \boldsymbol{k}_{i}}{m_{N}} h_{1}^{\perp} \bigg] \\ &+ \Lambda \frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{s}_{\perp}}{m_{N}} h_{1L}^{\perp} + \frac{\boldsymbol{s}_{j}(2\boldsymbol{k}_{j}\boldsymbol{k}_{i} - \boldsymbol{k}_{\perp}^{2}\delta_{ji})\boldsymbol{S}_{i}}{2m_{N}^{2}} h_{1T}^{\perp} \bigg) \end{split}$$

Boglione, Mulders PRD 60 (1999)

correlations in x and t

Nucleon form factors

Lattice QCD propaganda

BMW (Dürr et al.) Nature 2009

Lattice QCD propaganda

Lattice parameters – LHPC

Form factors of the energy momentum tensor and fundamental sumrules

Form factors of the energy momentum tensor

isovector quark momentum fraction

TMDs in lattice QCD

PhH, <u>B. Musch</u>, J. Negele, A. Schäfer, arXiv:0908.1283 B. Musch, PhD thesis arXiv:0907.2381

Transverse momentum dependent PDFs - formalism

Transverse momentum dependent PDFs - formalism

Overview of numerical results for A₂

54

Renormalization

 $\begin{array}{c} \hline potential \ power-divergence} & U[C_l] \propto e^{-\delta m \, l} = e^{-\frac{\delta \widehat{m}}{a} \, l} \\ \hline V_{\bar{Q}Q}(R) = \lim_{T \to \infty} \partial_T \ln \langle W(R,T) \rangle = V_{\bar{Q}Q}^{\text{ren}}(R) + 2\delta m \end{array}$

Illustration of renormalization

"Regularization" and multiplicative renormalization

I²-dependence of invariant amplitudes (renormalized)

Intrinsic transverse momentum densities of the nucleon

Approximate relations between GPDs and TMDs

Diehl, PhH EPJC 2005 Metz et al. 2007

Momentum fraction of quarks in the nucleon

Intrinsic transverse momentum densities of the nucleon

